The μ-calculus alternation hierarchy collapses over structures with restricted connectivity
نویسندگان
چکیده
It is known that the alternation hierarchy of least and greatest fixpoint operators in the μ-calculus is strict. However, the strictness of the alternation hierarchy does not necessarily carry over when considering restricted classes of structures. A prominent instance is the class of infinite words over which the alternation-free fragment is already as expressive as the full μ-calculus. Our current understanding of when and why the μ-calculus alternation hierarchy is not strict is limited. This paper makes progress in answering these questions by showing that the alternation hierarchy of the μ-calculus collapses to the alternation-free fragment over some classes of structures, including infinite nested words and finite graphs with feedback vertex sets of a bounded size. Common to these classes is that the connectivity between the components in a structure from such a class is restricted in the sense that the removal of certain vertices from the structure’s graph decomposes it into graphs in which all paths are of finite length. Our collapse results are obtained in an automata-theoretic setting. They subsume, generalize, and strengthen several prior results on the expressivity of the μ-calculus over restricted classes of structures.
منابع مشابه
The \mu-Calculus Alternation Hierarchy Collapses over Structures with Restricted Connectivity
It is known that the alternation hierarchy of least and greatest fixpoint operators in the μ-calculus is strict. However, the strictness of the alternation hierarchy does not necessarily carry over when considering restricted classes of structures. A prominent instance is the class of infinite words over which the alternation-free fragment is already as expressive as the full μ-calculus. Our cu...
متن کاملThe Modal μ-Calculus Hierarchy on Restricted Classes of Transition Systems
We study the strictness of the modal μ-calculus hierarchy over some restricted classes of transition systems. First, we prove that over transitive systems the hierarchy collapses to the alternation-free fragment. In order to do this the finite model theorem for transitive transition systems is proved. Further, we verify that if symmetry is added to transitivity the hierarchy collapses to the pu...
متن کاملThe modal µ-calculus hierarchy over restricted classes of transition systems
We study the strictness of the modal μ-calculus hierarchy over some restricted classes of transition systems. First, we show that the hierarchy is strict over reflexive frames. By proving the finite model theorem for reflexive systems the same results holds for finite models. Second, we prove that over transitive systems the hierarchy collapses to the alternation-free fragment. In order to do t...
متن کاملA Measured Collapse of the Modal µ-Calculus Alternation Hierarchy
The μ-calculus model-checking problem has been of great interest in the context of concurrent programs. Beyond the need to use symbolic methods in order to cope with the state-explosion problem, which is acute in concurrent settings, several concurrency related problems are naturally solved by evaluation of μ-calculus formulas. The complexity of a naive algorithm for model checking a μ-calculus...
متن کاملThe alternation hierarchy in fixpoint logic with chop is strict too
Fixpoint Logic with Chop extends the modal μ-calculus with a sequential composition operator which results in an increase in expressive power. We develop a game-theoretic characterisation of its model checking problem and use these games to show that the alternation hierarchy in this logic is strict. The structure of this result follows the lines of Arnold’s proof showing that the alternation h...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Theor. Comput. Sci.
دوره 560 شماره
صفحات -
تاریخ انتشار 2014